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Liquid-solid transition of hard spheres under gravity
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~Received 11 May 2000!

We investigate the liquid-solid transition of two-dimensional hard spheres in the presence of gravity. We
determine the transition temperature and the fraction of particles in the solid regime as a function of tempera-
ture via event-driven molecular-dynamics simulations and compare them with the theoretical predictions. We
then examine the configurational statistics of a vibrating bed from the viewpoint of the liquid-solid transition
by explicitly determining the transition temperature and the effective temperatureT of the bed, and present a
relation betweenT and the vibration strength.

PACS number~s!: 64.70.Dv, 05.20.Dd, 51.10.1y
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The hard-sphere model has been quite successful in
plaining the macroscopic properties of dense fluids, or ga
from the microscopic point of view@1#. At the molecular
level, the potential energy of the hard spheres due to gra
is small in comparison to the thermal fluctuations and it h
usually been ignored. However, when the mass of the c
stituent particle is macroscopic in quantity, as in the case
granular materials@2#, gravity cannot be ignored. The pu
pose of this paper is to demonstrate the existence o
gravity-induced liquid-solid phase transition of hard spher
This transition is an intrinsic transition associated with a
system where the excluded volume interaction is domin
Such a system cannot be compressed indefinitely, and m
exhibit a coherent low-energy state. In the hard-sphere
tem, gravity introduces a potential energy, and each avail
site is associated with an energy state. Then, the formatio
a solid at the bottom below the transition point is nothing b
a massive occupation of the low-energy state at the low t
perature, which is the Fermi gas in metals, the Bose cond
sate in the two-dimensional quantum Hall systems@3#, the
energy storage mechanism into a single state for biolog
systems@4#, a mechanism to produce coherent light in t
context of lasers@5#, and the liquid-solid transition in a hard
sphere system under gravity, which is the subject of the c
rent work. We will determine via the even-driven molecula
dynamics simulation the transition point and the thickness
the boundary layers as a function of external parameters,
make a careful comparison with the theoretical predictio
@6#. Next, a nontrivial by-product of our investigation is
view the configurational statistics of the vibrating bed@7,8#
from the viewpoint of the liquid-solid transition of har
spheres. This will certainly help one to compare the confi
rational statistics and other thermodynamic properties of
brating beds with those equilibrium properties of hard-sph
systems.

Transition temperature and the thickness of boundary l
ers. Consider a collection of elastic hard spheres of masm
and diameterD, confined in a two-dimensional (x,z) con-
tainer with an open boundary at the top. Gravity acts alo
the negative-z direction. The system is in contact with th
thermal reservoir at a temperatureT in such a way that the
average kinetic energy of each hard sphere,T5m^vx

2

1vz
2&/2 with ^•••& being the configurational average. W

now start fromT50, at which point all the particles ar
essentially in a solid regime, and the density profile is sim
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a rectangle. If we gradually increase the temperature, flu
zation starts from the surface, and the boundary layers
pear. One may estimate the thickness of the boundary layh
by a simple energy balance between the kinetic and pote
energy:mgDh' 1

2 m^v2&'T. From this, one may obtain th
size of the solidlike regime, or equivalently, its dimensio
less height, sayzF(T),

zF~T!5m2h5m2
T

mgD
, ~1!

wherem is the number of layers of the original rectangle a
h is the layer thickness in units ofD. Equation~1! predicts
the existence of a critical temperatureTc at which point a
phase transition from a one-phase~liquid! to a two-phase
regime~liquid-solid! occurs. By setting,zF(Tc)50, we find
the mean-field result:Tc

M .F5mmgD. Since the boundary
layer exists only when both phases coexist,Tc must be the
temperature at which point the system becomes fully flu
ized. One may equally define the critical temperature a
point at which the density at the bottom layerfo becomes
the closed-packed densityfc , i.e., fo(Tc)5fc . We now
rewrite Eq.~1! in terms of the critical temperature, and reca
the size of the solid region, in term ofT/Tc , as

zF~T!/m5S 12
T

Tc
D . ~2!

A more precise estimate of the transition temperature w
given in Ref.@6# within the framework of the Enskog theor
@9#. In particular, the following expression for the densi
profile f(z) was obtained as a function of the dimensionle
variablez5z/D,

2b~z2m̄ !5 ln f1c1f1c2 ln~12af!1c3 /~12af!

1c4 /~12af!2 ~3a!

with the constantbm̄ given by

bm̄5 ln fo1c1fo1c2 ln~12afo!

1c3 /~12aofo!1c4 /~12afo!2, ~3b!

where b5mgD/T, and c152a2 /a2(p/2)'0.0855, c25
2(p/2)(a122a2 /a)/a2'20.710 c352c2 , c45(p/2)
8295 ©2000 The American Physical Society
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3(12a1 /a1a2 /a2)/a'1.278, with a50.489 351p/2
'0.768 67. Note that the relation between the volume fr
tion n and f is given by n5p(D/2)2N/V5pf/4. If one
integrates the density profile, and imposes the sum r
*0

`f(z)dz5fom, then one finds that this sum rule brea
down at the temperatureTc ,

Tc5mgDmfo /mo . ~4!

The departure from the mean-field theory is the appeara
of a factor fo /mo in Eq. ~4!, where fo5(4/p)(p/2A3)
51.154 700 538 . . . andmo5111.522 74 . . . . Equation~2!
remains unchanged. We now present MD data to test E
~2! and ~4!.

Molecular-dynamics simulations of gravity-induce
liquid-solid transition.We have used the event-driven~ED!
molecular-dynamics code, and refer the readers to Ref.@10#
for details of the algorithm regarding the collision dynam
that take into account the rotation of hard spheres, and a
to handle the inelastic collapse. The thermal reservoir of
system was modeled using white-noise driving@11#, which
kicks each particle so that the average kinetic temperatur
each particle is the same as that of the reservoir, and he
the kinetic temperature of the system. Note that we arenot
driving the system by connecting the bottom wall to the te
perature reservoir, which was often used as a model fo
vibrating bed.

We present in Fig. 1 a typical configuration below the
transition temperature (T,Tc), at which about 17 layers o
particles condense and form a crystal near the bottom@Fig.
1~a!#. More precisely, the particles first form a loose hexag
nal crystal and progressively evolve into a compact hexa
nal lattice structure. The solid line in the density profile@Fig.
1~b!# is the Enskog profile given by Eq.~3a!, which was
shiftedto fit the data beyond the crystal regime. We point o
here that~i! this shift is not an arbitrary parameter, bu
should be uniquely chosen to fit the data, and~ii ! this shift in
fact determines themeasuredsize of the solid by simula-
tions. The density in the solid regime is then fit by a straig
line as shown in the figure. The oscillations in the solid
gime are real, but it is simply the finite-size effect, i.e., t
hexagonal packing in a finite lattice has two more particles
alternative layers. This oscillation must disappear in the th
modynamic limit.

The critical temperatureTc is determined as the temper
ture at which point acompacthexagonal crystal is formed
from the bottom layer, beyond which point the density at
bottom layer remains constant atfo51.15, and this hexago
nal structure is permanently retained. We point out tha
loosely hexagonal crystal forms at a temperatureTc8 , which
is somewhat larger thanTc . BetweenTc and Tc8 , particles
squeeze themselves, expelling holes, and progressively f
ing a compact hexagonal crystal. Note that a few vacan
created during this crystallization do not anneal but stay
the system@Fig. 1~a!#. Now, in order to carry out the quan
titative analysis of the formation of a crystal beyond the tra
sition temperature, we havemeasuredthe size of the solid as
mentioned above, namely by shifting the Enskog profile@i.e.,
Fig. 1~b!#, and plotted it at different temperatureT,Tc as a
function of the scaled variableT/Tc for 1000 particles of
m52.09031026, D50.001 m, andm520. The solid line
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in Fig. 2~a! is the prediction Eq.~2!. The excellent agreemen
between the theory and simulations is a confirmation of~i!
the existence of the gravity-induced liquid-solid transition
hard spheres, and~ii ! the validity of the suggested mecha
nism of this transition via the disappearance of particles fr
the liquid and their settlement into the solid regime as p
dicted by Enskog theory@6#. We point out that the transition
here is sharp, but because of the discrete nature of the
spheres, it is somewhat difficult to measure the layer thi
ness of the solidified regime nearTc , when the layer thick-
ness is less thanone layer. This is the reason why the me
surement was a little far away the transition temperature

Next, we present our analysis of the vibrating bed fro
the viewpoint of the liquid-solid transition discussed abov
See Fig. 3. It has been fairly well established that the c
figurational statistics of the vibrating beds seem identica
the equilibrium statistics of a molecular gas at an equal pa
ing fraction @8#, yet the relation between the vibration
strength,G, and the corresponding equilibrium kinetic tem

FIG. 1. ~a! Snap shot atT,Tc , where about 17 layers~black
grains! form a crystal and two layers at the top are fluidized.~b! The
fitting of the density profile is the combination of the Enskog profi
@Eq. ~3!# and the rectangle~straight line!. The vertical axis is the
positionz from the bottom, and the horizontal axis is theF.
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perature has remained largely undetermined. There has
a previous attempt to relateG to the Fermi temperature@12#,
which is not the same as the kinetic temperature, but es
tially the compactivity@13#. In the present work, we will
establish a specific relation between the vibration stren
and the kinetic temperature, and test its validity via simu
tions.

At a low vibration strength, experimental data@7# seems
to clearly indicate two distinctive regimes: the solid regim
near the bottom where there are very little particle mo
ments, and the liquid regime near the surface where parti
are dynamically active exchanging their positions via co
sions. Hence, the system presented in Ref.@7# is below the
liquid-solid transition temperature. We will determine bo
the transition temperatureTc and the effective temperature o

FIG. 2. The fraction of the hard spheres in the condensed reg
as a function ofT/Tc with N51000, m520, g5981 cm/sec2,
and m51.04731026 ~square!. The data points are obtained b
uniquely determining the shifting position of the Enskog profi
and the solid line is the prediction Eq.~2!.

FIG. 3. Experimental density profile of the granular materials
a vibrating bed~Ref. @7#!. The fit was by the Enskog profile near th
surface and the rectangle belowzF .
en
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the system, and then measure the size of the solid region
compare it with the prediction made by Eq.~2!. The control
parameters are given in Ref.@7#, namely the particle diam-
eterD52.99 mm, and the dimensionless initial layer thic
ness m510.2, from which we determine the normalize
critical temperature of the vibrating bedTc /mg
5mDfo /mo50.607 mm. The effective temperature of th
system is then determined by fitting the tail region and sh
ing the Enskog profile byzo . We find T/mg50.36 mm,
andzo54.41 layers from which we measure the size of t
solid aszo5fozo /D512 mm'4.0 layers, while the pre-
dicted dimensionless height of the solid region,zF , is zF
5m(12T/Tc)'4.15 layers. The previous fitting of the den
sity profile by the Fermi profile was also satisfactory, b
was found to be most difficult near the rounded regio
which the Enskog profile fits quite well~Fig. 3!. One advan-
tage of the present method of analyzing the configuratio
statistics of the vibrating bed might be that the globalkinetic
temperature can now be associated with the vibrating b
and hence comparison can be made between the experi
tally determined configurational statistics of the vibrati
bed and those of the hard spheres in thermal contact with
heat reservoir. The specific relation between the two can
obtained by comparing the thermal expansion of the h
spheres and the kinetic expansion of the vibrating bed.
thermal expansion is simply the increase in the center
massDz(T), which can be computed by the Enskog profi
near the tail, and the solid rectangle. We find

Dz~T!5
Dm

2 S 2uL1ufo

mo
2

21D S T

Tc
D 2

, ~5!

where the constant

uL1u5fo*o
1@ f ~rfo!2 f ~fo!#@rfof 8~rfo!dr#

55503.531 806

with f (x) given in Eq.~3a!. Note that the correction is sec
ond order inT. Let Ho(G) be the single ball jump height on
the surface@16#. Then, by equatingDz(T) andHo(G)g/v2,
we find the desired relation

T

Tc
5A2Ho~G!g

Dv2m2 S mo
2

2uL1ufo2mo
2D , ~6!

wherev is the vibration frequency. Putting all the value
Eq. ~6! predictsT/Tc50.663, which is close to the measure
value of 0.593 above.

In conclusion, two points are in order. First, we ha
demonstrated in this paper that the point at which the Ens
description of hard spheres fails indeed signals the liqu
solid transition, and such a failure arises via the breakdo
in the particle conservation. The missing particles form
condensate at the bottom, which essentially determine
fraction of particles in the solid regime, and in turn the thic
ness of boundary layers. Since only a fraction of grains
mobilized under shear@14#, and avalanches and many inte
esting dynamics occur in these thin boundary layers@2#, such
a determination should be of technological importance. S
ond, since Enskog theory is a truncation of Bogoliubo
Born-Green-Kirkwood, and Yvon~BBGKY! @15# hierarchy

e

,



id
ti
la
h
el
he
ar
si
ti

or
ha

d
it
o
s
m
ot
r

th
s
th
u-
s

cus-
-

y
eal
-
e at
nt
ure
ll,
rk,
int

ists
en-
the

ex-
due
ut

is
of
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at the third order, the existence of gravity-induced liqu
solid transitions of hard spheres must have some interes
consequences to higher-order kinetic theory, in particu
with regard to the dynamic behaviors. Unlike particles in t
liquid regime, those particles in the solid regime are larg
confined in cages and fluctuate around fixed positions. T
motions resemble the lattice vibrations rather than bin
collisions, and it may be a little peculiar, albeit not unphy
cal, to attempt to describe the lattice vibrations by the kine
theory. If so, such a description must include much m
than binary collisions. Hence, it is not unphysical to see t
these particles disappear from the kinetic equationat the
levelof the Enskog approximation. However, as discusse
the beginning and demonstrated in this paper, this grav
induced liquid-solid transition is not a peculiar phenomen
associated with the Enskog equation, but rather an intrin
transition inherent in a system where an excluded volu
interaction is dominant. The formation of a solid at the b
tom is the appearance of a massive occupied low-ene
state due to the Pauli exclusion principle. Therefore,
breakdown in the sum rule, the necessary shift of the den
profile due to the formation, and its upward spread of
closed-packed regimeshouldpersist because the Pauli excl
sion principle is in action in real space, even if one may u
hy
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different approximations@16–18# or may try a different form
for the pressure, such as the form suggested by Per
Yevick @19#, and/or in higher-order truncation. It only disap
pears in the limit when the closed volume packing densitn
becomes one, which is possible only in the case of an id
Appolonian packing@20#. Finally, we point out that the pres
ence of dissipation does not alter the condensation pictur
all @21#, if the velocity distribution remains Gaussian. Rece
experiments@22# have demonstrated the non-Gaussian nat
of the velocity distribution, but if the dissipation is sma
which is the case for the simulations carried out in this wo
the deviation from Gaussian should be small. We also po
out that for hard-sphere systems without gravity, there ex
no typical energy scale, and thus any transition must be
tropy driven, i.e., there exists no critical temperature, and
phase transition occurs at a critical volume fraction@23#.
However, for the system considered in this paper, there
ists a typical energy associated with the potential energy
to gravity, and thus this transition is not entropy driven, b
energy driven, and there exists a critical temperatureTc .

We wish to thank Stefan Luding for providing us with h
MD code and many helpful discussions over the course
this work.
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